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Genetic diversity within diagnostic sputum
samples is mirrored in the culture of
Mycobacterium tuberculosis across different
settings
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Culturing and genomic sequencing ofMycobacterium tuberculosis (MTB) from
tuberculosis (TB) cases is the basis formany research and clinical applications.
The alternative, culture-free sequencing fromdiagnostic samples, is promising
but poses challenges to obtain and analyse the MTB genome. Paradoxically,
culture is assumed to impose a diversity bottleneck, which, if true, would entail
unexplored consequences. To unravel this paradox we generate high-quality
genomes of sputum-culture pairs from two different settings after developing
aworkflow for sequencing from sputumand a tailored bioinformatics analysis.
Careful downstream comparisons reveal sources of sputum-culture incon-
gruences due to false positive/negative variation associated with factors like
low input MTB DNA or variable genomic depths. After accounting for these
factors, contrary to the bottleneck dogma, we identify a 97% variant agree-
ment within sputum-culture pairs, with a high correlation also in the variants’
frequency (0.98). The combined analysis from five different settings andmore
than 100 available samples shows that our results can be extrapolated to
different TB epidemic scenarios, demonstrating that for the cases tested cul-
ture accurately mirrors clinical samples.

Mycobacterium tuberculosis (MTB) research from clinical samples
usually involves a culturing step to obtain sufficient bacteria for
downstream applications, including MTB whole-genome sequencing
(WGS) studies. As a consequence, our current knowledge of MTB
characteristics, including its biology during infection, evolution, epi-
demiology, and diagnostics, is largely based on cultured samples1,2. It
has beenhypothesised that the cultivationproceduremay constrain the
genetic diversity of MTB, either by selecting for specific variants more

suited to in vitro growth as happens for somedrug resistancemutations
or lineages3–5, or simply due to the bottleneck imposed by the culture
inoculum6. If true, this could distort our understanding of bacterial
diversity, particularly at the within host level and even affect epide-
miological and drug resistance inferences that rely on the presence or
absence of a few single nucleotide polymorphisms (SNPs). Direct
sequencing from clinical samples is an alternative as it could bypass the
potential disadvantages of culturing7. However, the implementation of
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culture-free sequencing techniques is challenging due to the complex-
ity of the sample matrix with low amounts of mycobacterial DNA and a
mix of contaminants including host genetic material8,9.

Previous efforts on culture-free genome sequencing have focused
ondeveloping new and affordableprotocols forMTB culture-freeWGS
and assessing their reliability for clinical applications, mainly for AMR
diagnosis and transmission inference10–15. Those studies show contra-
dictory results regarding overall genetic diversity comparisonbetween
culture-based and culture-freeWGS. Somepublications have identified
no significant differences11,12, while others have reported a reduction in
genetic diversity when culturing13,16. These contradictory results
probably reflect limitations of the studies, often focused in one single
setting and the limited quality of culture-free sequences prevent a
proper comparison of genetic diversity between settings. This is spe-
cially true to identify low frequency variants which are more likely to
suffer from any technical (i.e. sample processing) and analytical
limitations17. Therefore, the question of whether culture does actually
impose such a bottleneck remains largely unsolved despite its
importance. Themain goal of this work is to determine, in different TB
settings, whether culture reflects the original MTB variability present
in the diagnostic samples, typically sputum, making the culture a sui-
table sample for clinical research.

Here we have put together our own comprehensive dataset
including samples from two settings differing in tuberculosis (TB)
incidence, burden of AMR, and HIV co-infection; and achieving suffi-
cient sequencing depth to properly compare genetic diversity, espe-
cially regarding low-frequency variants. We successfully sequence 61
high-quality sputum-culture pairs from Georgia and Mozambique,
which are middle- and high- burden TB settings. For the sputa, we
implemented a culture-free WGS approach based either in direct
(dWGS) or bait-enrichment (eWGS) sequencing, depending on the
amount of MTB DNA. In addition we carry out experimental bench-
marking to detect major sources of artifactual genetic variation in
culture-free approaches. We also reanalyse available datasets10,13,16 to
generalise our results across settings and sequencing approaches.
Importantly, we develop a tailored analysis workflow to address the
absence of standardised laboratory protocols and bioinformatic

pipelines, carefully considering artefacts beyond the role of potential
contaminants in the sample. Our customised workflow is capable of
demonstrating that culture accurately reflects sputum diversity in all
the evaluated settings, albeit with some individual exceptions. Our
results indicate that the current knowledge ofM. tuberculosis diversity
based on culturing methods is robust, in the scenarios tested, and
therefore the genetic diversity observed in culture generally mirrors
that present in the diagnostic sample. In addition, we provide in-vitro
and in-silico tools to test the correlation in scenarios not contemplated
in this work.

Results
Selection of sputum-culture pairs
Out of the initial 95 sputum-culture pairs available, 80/95 (84.2%) were
suitable for WGS since 4/95 (4.2%) cultures did not grow and 11/95
(11.6%) sputa wereMTB negative according to qPCR results and %MTB
(Cq>35 and <1%MTB). Given their quality, in terms of Cq and %MTB
DNA, 48/80 (60%) sputa underwent dWGS and 32/80 (40%) were
enriched before sequencing (Fig. 1a; seeMethods). Percentage ofMTB
was obtained before and after the enrichment step. We observed that
sputa with an initial MTB%within 0.5-10% reached 25.5-98.4% after the
enrichment, while those containing initially 10-25% of MTB reached
more than 90% of MTB (see Methods).

A total of 19 sputa sequences did not meet the minimum quality
criteria (30X depth and 95% coverage) (Fig. 1b), thus these pairs were
excluded from further analysis. The sequencing performance of the
remaining 61 pairs was: median depth 48X for eWGS (30-157X), 74X
(33-302X) for dWGS and 114X (46-347X) for cultures. Median genome
coverage, at a minimum of 20X depth, was above 96% in all sputa and
cultures (Table 1). See below the samples’ sequencing workflow in the
Methods section. All samples’ information is available at Supplemen-
tary Data 1 and Supplementary Fig. 1.

Tailored SNP calling analysis for culture-free WGS
To determine if culture-free sequencing approaches introduced a bias
during the variant calling, we compared fixed and low-frequency var-
iants detected in trios of eWGS, dWGS and culture-WGS from the same

Fig. 1 | Evaluation of sputum samples for sequencing. a qPCR Cq vs %MTB.
95 sputa are each one represented by a point. %MTBwas obtained by performing a
pre-sequencing run in order to determine if each sputum contained enough MTB
DNA to be sequenced directly (light purple) or if it required a previous enrichment
step (dark purple). Sputum samples in orange were considered negative (Cq>35
and%MTB< 1%). Shape indicates sample origin: triangles forMozambique, dots for
Georgia. Dashed lines represent thresholds to decide which WGS approach to
follow, the horizontal line highlights MTB% = 20%, the vertical line highlights Cq =

25. b Mean depth vs coverage. 86 sputa sequenced with enrichment (eWGS,
square) or directly (dWGS, diamond). Colour represents the sequencing quality,
good quality samples (the ones used for comparison analysis) are in green and
bad quality samples in red. The dashed lines represent the coverage and depth
cut-off values to consider a good quality sample, the horizontal line highlights a
coverage = 0.95 and the vertical line highlights depth = 30X. Source data is
provided as a Source Data file.
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TB case in three suitable examples. After variant calling, we imple-
mented a “recovery” step inwhich all variants not passing filters in one
sequencing approach, but accurately called in another approach, were
re-included or “rescued” in the analysis. Our rationale was that culture-
free WGS is performed in samples with low amounts of MTB DNA,
hence increasing the chance of variants not passing the filters due to
lower sequencing depths. Before applying our customised calling fil-
ters, we identified up to 22 variants only detected in eWGS, all of them
at low frequencies (median=22%, range=10-54%). Exclusive variants
were also detected in dWGS (up to 8) and in culture-WGS (up to 3) but
the magnitude of the differences were minor compared to eWGS
(Fig. 2a Venn diagrams in blue). We screened manually the discrepant
variants in the eWGS approach, and identified that all of them
appeared in supplementary alignments (Supplementary Fig. 2). A
supplementary alignment is a read segment split from the primary
read and aligned to a different region of the genome that can produce
false positive calls in the variant calling step18,19. After discarding sup-
plementary alignments, most discrepant SNPs disappeared giving a
concordance of 99-100% in the variant calling between the three
sequencing approaches (Fig. 2a).

The extended analysis of all the 61 sputum-culture pairs demon-
strated that overall the 88.5% (307/347) of the discrepant variants
between sputa (either eWGS or dWGS) and paired cultures were false
positives introduced by supplementary alignments, and these false
positive variation was accumulated in 11/61 sputa (taking into account
the sputum samples with more than 5 SNPs discarded due to supple-
mentary alignments). Particularly, eWGS sputa accumulated sig-
nificantly higher false positive variants than dWGS sputa and cultures
(Wilcox test, p-value < 0.001, Fig. 2b) likely due to a higher amount of
chimeric reads causing supplementary alignments. After discarding
them from the bam files, we identified a mean of 18.3 false positive
SNPs (range 0–106 SNPs corresponding to 1–7.4%) per eWGS- culture
pair (Fig. 2c, Supplementary Fig. 3) whereas, dWGS-culture pairs
showed a lower mean value of 0.3 (1–5 SNP corresponding to 0.3–5%)
false positive SNPs (Fig. 2c, Supplementary Fig. 3). Notably, a high,
positive and significant correlation (corr=0.95 [confidence interval:
0.85–0.98], p-value < 0.001) was obtained between supplementary
alignments and false positive SNPs for eWGS, whereas, in the case of
dWGS, the correlation was lower and with limited impact on variation
(Fig. 2d). Supplementary alignments accounted for only 1.2% of the
reads on average (range: 0.2–7.5; dWGS: 1.0%, eWGS: 2.3%), therefore
not impacting the depth and genome coverage (Supplemen-
tary Data 1).

Sputum-culture genetic diversity comparison
After applying our tailored SNP calling pipeline we evaluated the
genetic diversity between sputum and culture. Overall, a mean of 913
(range 770–1063), representing 97% of the total SNPs detected, were
common in sputum and culture (Supplementary Fig. 4). The SNPs
rescued represent approx 3% of total SNPs, with a mean of 24 (range
5–69) (Table 2; Fig. 3a; Supplementary Fig. 5). We noticed that rescued
SNPs can have an impact, added to that of/in addition to supplemen-
tary alignments, when evaluating the correlation between sputum-
culture pairs and can affect both sputum and culture estimated
diversity. The effect of both supplementary alignments and the rescue
step in the total of discrepancies per sample is detailed in Supple-
mentary Fig. 6. Regarding exclusive variants, we also observed a small
proportion of sputum-exclusive SNPs (mean 1, range 0–10) and
culture-exclusive (mean 1, range 0–11). In other words, most of the
sputum-culture pairs (49/61, 80.3%) did not display any discrepancies
in sputum; 9/61 (14.8%) presented 1–5; and only 3/61 (4.9%) had
between 5 and 10 sputum-exclusive SNPs (Fig. 3b).

It could be argued that culture-freeWGS will bemore relevant for
determining the frequency of SNPs rather than just their presence/
absence. The correlation between the frequencies of SNPs observed in
both sputum, either dWGS and eWGS, and culture (commonSNPs)was
0.98 (0.93–0.99, p-value < 0.001) (Fig. 3a; Supplementary Fig. 5). By
going deeper, we observed thatmost of the commonSNPs (98%) had a
small frequency difference within both paired samples (median = 0,
ranging 0–10%) with higher frequencies in culture than in sputum
(Fig. 3c). To highlight, 83.4% (46445/55700) presented the same fre-
quency in sputum and culture pairs. As expected, these differences
were slightly higher for rescued SNPs with 70% of them ranging 0–10%
frequency and a 28% ranging 11–30% frequency (Fig. 3c).

Regarding the exclusive variants, we observed a total of 40
sputum-exclusive SNPs distributed among 12 sputa, with 17 out of 40
(42%) falling within a frequency interval of 30-40%. For those culture-
exclusives, which were present in 12 cultures, 73.8% (31/42) were found
within a frequency range of 10-20% (Fig. 3c).

The results for discrepant variants suggest that, in some cases,
variants with intermediate frequencies (between 30-80%) in sputum
can be missed in culture. In any case, the number of exclusive variants
present only in sputum or in cultures were similar and low compared
to those commonly called. To highlight, no fixed-SNP (>90% fre-
quency) was detected within them.

Generalisation of results in different datasets
Finally, we extended our analysis to publicly available sputum-culture
sequencing data from three different clinical settings10,13,16. In those,
authors described differences in genetic diversity between sputum
and culture pairs. We only analysed those sequences meeting the
quality criteria (see Methods) for comparisons. After applying our
pipeline, we observed that 88% of pairs differed in less than 5 SNPs
(Fig. 3b), all of them below 90% frequency. These results are very
similar to the ones obtained for the dataset generated in this study
(samples from Georgia and Mozambique; Fig. 3b). For those studies
with the number of discrepant SNPs available in the publication (Goig
et al.10 and Nimmo et al.16), our pipeline reduces the number of dis-
crepant SNPs froman average of 10.4 SNPs (median 7, range 4–32) to 0
SNPs in all 7/7 sputum-culture pairs of Goig et al.10 dataset; and froman
average of 8.7 SNPs (median 5, range 1–45) to 1 SNPs (median: 0, range
0–7) in 28/32 pairs from Nimmo et al.16. dataset (Fig. 3d). Contrary to
the Goig et al.10 dataset, in three samples of Nimmo et al.16. dataset, the
number of SNPs did not decrease before and after applying our tai-
lored pipeline, and there was even an increase in one of the pairs. For
that sample (RF0003, Fig. 3d) the number of discrepant SNPs in spu-
tum is higher than for the rest of comparisons.

Overall, the results from our dataset suggest that almost all the
genetic variability present in the original sputum is represented by

Table 1 | Summary of sequencing results of the 61 paired
samples

Total pairs = 61

eWGS dWGS Culture WGS

Total WGS 16 45 61

Median Depth 48.00 74.00 114.00

Q1 33.75 47.00 94.00

Q3 76.25 120.00 127.00

IQR 42.50 73.00 33.00

min depth 30.00 33.00 49.00

max depth 157.00 302.00 347.00

Median Coverage 0.96 0.98 0.98

Q1 0.96 0.97 0.98

Q3 0.97 0.98 0.98

IQR 0.01 0.01 0.01

min coverage 0.96 0.96 0.97

max coverage 0.98 0.99 0.98

Q quartile, IQR Interquartile range, minminimum, max maximum.
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Fig. 2 | Analysis of supplementary alignments. a Venn diagrams of the compar-
isons between trios of direct sputum (dWGS), enriched sputum (eWGS), culture
WGS. Amount and percentage of exclusive and common variants are denoted. Blue
and orange Venn diagrams represent comparisons of variant calls from default
unfiltered bams (including supplementary alignments and filtered bams, respec-
tively. b Comparison of the amount of supplementary alignments between direct
(sputum dWGS and culture WGS, light purple) and enriched sputum samples
(eWGS, dark purple) in all 61 paired-samples. Median (M) and the total amount of
samples (n) are shown. Asterisk (*) highlights a significant p-value (Wilcox test,
p-value = 0.0002049). Data are presented as box-plots: centre line represents the
median, upper bound located at 75th percentile, lower bound at 25th percentile,
whiskers at minimum and maximum values and the outliers. Each dot represents
one sample. c On the left there is the comparison of the discrepant SNPs exclusive
in sputum, either dWGS and eWGS, before and after filtering supplementary
alignments. Colours stand for variant calls from bams before discarding

supplementary alignments (blue) and after discarding them (orange). The x-axis is
discontinued. The right part shows the percentage of supplementary alignments in
sputumfiles, either dWGS (light purple) and eWGS (dark purple). Plot c contains 32/
61 pairs, the 16 ones containing a higher percentage of supplementary alignments
in each eWGS and dWGS. Samples are ordered from the highest to the lowest
amount of supplementary alignments. The complete version containing the 61
pairs can be seen in Supplementary Fig. 3. dCorrelation between the percentage of
supplementary alignments and the amount of SNPs removed when discarding
supplementary alignments from sputum bam files (represented as SNP difference
and calculated as follows: discrepant SNPs exclusive in sputum in Default Bams—
Filtered Bams). Colours represent whether the sputum samples have been
sequenced directly (light purple) or previously enriched (dark purple). Regression
lines, Pearson correlation coefficients (one-side) (Corr) and p-values are shown in
the plot. Source data are provided as a Source Data file.
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culture both in terms of presence/absence of SNPs but also in terms of
SNP frequency correlation within the samples. Re-analysis of available
datasets also points to a high sputum-culture concordance after dis-
carding false-positive variants, mostly due to the bioinformatic analy-
sis implemented.

Phylogenetic classification and drug-resistance profile
Weobtained a 100% concordancebetween sputumand culture lineage
(L) prediction. We identified 31/61 L4 strains (20 from Mozambique
and 11 from Georgia) and 16/61 L2 (8 strains from each dataset). The
remaining strains from Mozambique belonged to L1 (13/61 samples)
and L3 (1/61 sample). Regarding the re-analysed datasets the lineage
distributionwas 1/52 L1, 12/52 L2, 2/52 L3 and 37/52 L4. Concordance at
lower taxonomic levels according to Coll et al. classification20 was also
100%. Sublineage classification is shown in Supplementary Data 2.

All the 61 sputum samples matched with their paired cultures
when constructing a Maximum likelihood tree (Supplementary Fig. 1)
obtaining a 0 SNP in all pairs (fixed-SNP > 90% frequency) pairwise
distance. Two samples from Mozambique were in the same transmis-
sion cluster (measured at a 5 SNP distance cut-off) which was equally
detectedwhen culture and sputumgenomeswere analysed separately.

Regarding AMR-conferring variants, the agreement between the
resistance profile predicted in sputum and culture was 100%. We
obtained 10/61 pairs with at least one AMR-conferring mutation (6
from Georgia, 4 from Mozambique): 7/10 mono or poly-resistant, 2
MDR and 1 pre-XDR. All these were fixed-SNPs in both sputum and
culture. No low-frequency AMR-conferring variants were found. See
Supplementary Data 3 for resistance SNPs information. Regarding the
re-analysed datasets, we identified 31/52 strains with at least one AMR-
conferring mutation in the sputum and the culture. All of them were
fSNPs except one from Shockey’s10,13,16 dataset (P10) which was a het-
eroresistant variant present at 70% in both sputum and culture.

Discussion
In this study, we explore the role of culturing from sputum diagnostic
samples as a bottleneck for MTB genetic diversity. In terms of SNPs’
presence/absence, both fixed and minority variants, after comparing
the genomic variability, most culture-sputum pairs (91.8%, 56/61)
showed a difference of less than 5 (0–3) SNPs. Strikingly, the correlation
of the SNPs’ frequencies was very high (0.98, p-value <0.001). Our
findings show that culture mirrors the genetic diversity present in the
sputa analysed, considering both the presence/absence of SNPs and
their frequencies. We corroborate our results by reanalyzing previously
published datasets, suggesting that any apparent contradictions were
likely due to differences in bioinformatic pipelines. Importantly, our
findings were consistent across the datasets included, encompassing
samples from different clinical settings and laboratories.

One key finding of our study was the detection of false-positive
variation driven by chimeric reads most likely produced during sample
enrichment and library preparation steps.While this is a common issue,
we observed that they were significantly higher in the enriched sputa as
compared to direct sputa sequenced. The presence of chimeric reads
was potentially due to the low concentration of DNA in sputa. Con-
sidering that not all DNAwas fromMTB, the low quantity of target DNA
could lead tonon-specific amplifications in both library preparation and

PCR reactions carried out during the enrichment. Our hypothesis is that
such amplifications likely generate chimeric reads, resulting in supple-
mentary alignments during the mapping and, therefore, false variant
calls. Furthermore, a high correlation between supplementary align-
ments and false-positive SNPs was obtained for eWGS sputa, with spe-
cial impact on those samples with very low MTB DNA to be captured.
Importantly, while removing supplementary alignments reduces by
more than 80% the discrepant variants in some cases, it has no impact
on depth and coverage. However, amore dedicated study of the factors
affecting supplementary alignments is warranted as we identify some
non-enriched samples with a high number of alignments.

Another source of discrepancies is driven by differences in depth
throughout the genome, which is more relevant in culture-free WGS
approaches. To solve this, here we implemented a recovery step to
rescue the false negative variants present in the sputum or culture. It
was observed that the rescued SNPs only make up less than 3% of the
total SNPs analysed in the joint dataset. However, because differences
between culture and sputum are subtle, they can make a great impact
on the interpretation of sputum-culture differences in specific pairs.
This phenomenon is more obvious when looking at specific examples
like those presented in Fig. 3a. It is worth noting that the absence of
culture could have resulted in the oversight of these variants in the
sputum, highlighting the critical role of achieving minimum sequen-
cing depths for diversity comparisons. Overall, these findings
unequivocally indicate that achieving an accurate representation of
the original genetic diversity depends on sequencing depth, appro-
priate bioinformatic filters and careful post-processing of results.

The main aim of this study was to assess whether culturing dis-
torts the genetic diversity of the bacterial population present in spu-
tum. By performing an enrichment step, we succeed in increasing the
MTB DNA by 26.5-fold on average, allowing high-quality sequences of
sputa with as low as 1% of MTB DNA, similar to the values obtained by
Mann et al. 21. Since we have not explored the potential of culture-free
WGS as a diagnostic tool for TB, we performed as many runs as
necessary to achieve sufficient coverage and depth to reach our goal,
regardless of the sequencing cost per sample. With this effort we were
able to perform culture-free sequencing, with high quality, in 76% (61/
80) of diagnostic samples, suggesting that further improvements of
the technique will be needed as shown by others15. In fact, while pre-
vious studies showed that smear-negative and scanty sputa could be
enriched and sequenced occasionally10–13, a formal testing of the limit
of detection is still needed. Meanwhile, intermediate alternatives like
targetednext-generation sequencing tools arefinding a room in theTB
diagnostics pipelines22.

Understanding that the diversity of M. tuberculosis is reflected in
both sputum and culture has an impact on TB research, since the
overwhelming majority of studies today rely on culture sequencing to
assess diversity, even in those cases where surgery23 or post-mortem24

samples are interrogated. Our analysis suggests that diversity of the
diagnostic sample is well represented in those studies and that sub-
stantial variation is not missed in the matching culture. However, as a
limitation, in this study we have not been able to analyse the detection
of genotypes carrying AMR mutations (or any other mutation) with a
fitness cost in culture. Most of our samples are drug susceptible and
our analysis has identified only one case of heteroresistance for qui-
nolones which is equally detected in sputum and culture. Thus, the
high correlation observed in our sputum-culture pairs may not apply
in situations where a subpopulation has a mutation with associated
fitness cost. Mutations such as these are known to cause growth delay
and affect culture-based diagnostics, particularly in the case of
rifampicin-resistance conferring mutations occurring in rpoB4,25. Simi-
larly, this limitation also applies to cases where lineages with different
growth rates coexist, potentially affecting the identification of poly-
clonal infections, as it has been previously suggested for Lineage 6 and
animal strains5. Identification of those scenarios requires specific

Table 2 | Counts of common and discrepant variants in
61 pairs

Common Common rescued Only sputum Only culture

Mean 913 24 1 1

Median 889 21 0 0

Range 770-1063 5-69 0-10 0-11

Exclusive SNPs shown were obtained after the recovery step.
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analysis23 out of the scope of this work. For some cases, particularly in
the datasets from Georgia and South Africa16, we identified a higher
disagreement between sputum and culture. This may be due to the
presence of unknown fitness-cost associated mutations or to poly-
clonal infections with genetically close strains, which aremore likely to
happen in those settings, particularly if there are high transmission
hotspots26. Finally, a proportion of non-cultivable bacterial popula-
tions in the sputum of patients has been described in some studies,
which may be relevant at the clinical level27,28. In the case that those
populations are genotypically different (currently unknown) it may be

reflected in the few SNPs and pairs with sputum exclusive SNPs or it
may well be a phenomenon occurring below our limit of detection of
10% frequency. Those specific situations remain to be tested and here
we provide tools for an accurate assessment of the sputum-culture
diversity. Nevertheless, our dataset reflects the reality of many TB
cases, which are from single infections and carry drug-resistance
mutations that do not cause growth problems in culture.

In conclusion, our results highlight the importance of evaluating
and applying appropriate filtering steps when sequencing complex
samples, such as sputum, in order to detect and discard sources of false

Fig. 3 | Comparison of variants between sputum-culture pairs. a Comparison of
the amount of common and exclusive variants (Venn diagrams on the left) and
comparison of frequency of variants in sputum (dWGS or eWGS) and culture (on
the right). Colours represent common or exclusive variants. Percentage of MTB
reads in thedWGS is shownaboveeachplot. The completefigures containing the 61
pairs can be seen in Supplementary Fig. 4 and Supplementary Fig. 5. b Analysis of
sputum-exclusive variants in this dataset and published ones. Percentage of pairs in
each dataset with 0, 1-5 or more than 5 sputum-exclusive SNPs (all were not fixed
variants). Colours represent the dataset. Abbreviations of countries/regions stand
for: MZ-Mozambique, GE-Georgia, UK-United Kingdom, LIT-Lituania, SA-South

Africa, VLC-Valencia (Spain). c Histogram of the difference of frequency (freq)
between variants obtained in sputum versus culture (frequency in sputum - fre-
quency in culture). Colours represent whether the variants are common or exclu-
sive. Percentages of SNPs are shown on the top of the bars. The plot includes the
percentage of SNPs that have a frequency difference equal to 0.Total number of
variants is shown in grey boxes (n). d Differences of sputum-exclusive SNPs pub-
lished in the original paper (in blue) versus the ones found by running our pipeline
(in orange) for Goig et al.10 (upper panel) and Nimmo et al.16 (bottom panel) data-
sets. Source data are provided as a Source Data file.
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variation. After developing and applying a tailored bioinformatics ana-
lysis, we show that culture accurately captures the genetic diversity
present in diagnostic samples and this is true across settings and
laboratories tested. More specific scenarios remain to be analysed and
here we provide laboratory and bioinformatics tools to do so. On one
hand, from a diagnostic point of view our results reflect the long road
ahead towards whole genome-based diagnostics, as highlighted in
recent publications15. On the other hand, from a research point of view
our results support the largebodyofworkbasedon culture sequencing.

Methods
Ethics
The samples fromMozambique came from a study that was approved
by the National Bioethics Committee for Health of Mozambique
(CNBS, Ref:369/CNBS/17) and the Internal Bioethics Committee of
CISM. Regarding samples coming from Georgia, the ethical approval
was obtained from the Institutional Review board (IRB) of the National
Center for Tuberculosis and Lung Diseases within the framework of
observational clinical study NCT02715271. All methods were per-
formed in accordance with the relevant guidelines and regulations. An
informed consent was signed by all participants after providing a
verbal explanation andwritten information about the study. Regarding
participants under 18 years of age, the informed consent was obtained
from their relatives (parents or guardians). All data were de-identified
before the analysis.

Dataset
We received sputum-culture paired samples from the Centro de
Investigação em Saúde de Manhiça (Mozambique) and the National
centre for Tuberculosis and Lung Diseases located in Tbilisi (Georgia).
Mozambique and Georgia are considered high- and medium- burden
tuberculosis countries. No statistical method was used to pre-
determine sample size. To ensure that the bacillary load present in
sputum samples was enough for sequencing, we selected 50 sputum
samples from Mozambique graded High/Medium according XpertUl-
tra result and 3+/2+ according to smear microscopy result. Regarding
Georgia, we processed all 45 sputum samples received due to the lack
of bacillary load information. In summary, we processed 95 sputum-
culture paired samples.

Sputum samples, collected at diagnosis, were homogenised and
decontaminated in origin countries. In Mozambique, they performed
the N-acetyl-L-Cysteine-sodium hydroxide (NALC-NaOH) or Kubica
method29, while in Georgia they followed the modified Petroff proto-
col, that uses 4% NaOH, which was validated under supervision of the
WHO Supranational TB Reference Laboratory in Antwerp30.

The paired cultures were grown in 7H11 solid media, supple-
mented with OADC and glycerol to ensure a high amount of bacteria
for sequencing.

All samples, cultures and sputa, were received and processed at
FISABIO biosafety level 3 (BSL-3) facilities in Valencia, Spain.

Samples’ processing
DNA extraction from sputum samples. DNA extraction from sputum
leftovers was based on a differential cell lysis procedure to remove
non-MTB contaminant DNA using MolYsis basic5 kit (Molzym, Ger-
many). We followed a modified version of the original protocol that
entailed an initial lysis of non-mycobacterial cells to remove con-
taminant DNA, followed by an inactivation of MTB cells at 95 °C for
15min and a mechanical cell disruption using FastPrep. DNA pre-
cipitation steps were performed using ethanol, sodium acetate and
Glycoblue. DNA extraction steps are detailed as follows:
1. Saline wash

11. Centrifuge 1mL of sample at 13,000 rpm during 15min
12. Remove supernatant by pipettingwithout disturbing the pellet

(leave 200uL of liquid)

13. Add 1mL of PBS and resuspend the pellet by pipetting.
2. Lysis of human cells with MolYsis Basic5 kit:
21. Add 250 µL of CM buffer, mix by slow pipetting
22. Incubate 5min at room temperature (Note: CM is a chaotropic

buffer)
23. Add 250 µl buffer DB1 and 10 µl MolDNase B (do not premix) to

each sample and immediately vortex for 15 s.
24. Incubate at room temperature for 15min.
25. Centrifuge the tubes at 13,000 rpm for 10min.
26. Discard the supernatant taking care to not disturb the pellet.
27. Add 1mL of RS buffer and pipette up and down until the pellet is

resuspended.
28. Centrifuge the tubes at 13,000 rpm for 10min (During this step,

set a thermal block to 95 °C for MTB inactivation.
29. Discard the supernatant taking care to not disturb the pellet.
30. Add 700uL of sterile mqH2O and resuspend the pellet by pipet-

ting up and down.
3. MTB Cells Inactivation:
31. Spin down tubes at maximum speed 30 s and incubate at 95 °C

for 15min.
4. Mechanical cell disruption
41. Transfer all the volume 700uL to a 2mL FastPrep Lysing

Matrix B tube.
42. Break the cells using the FastPrep Mycobacterium tuberculosis

programusing 1 pulse insteadof two (45 s at 6.5m/s).Microscopic
glass beads break the mycobacterial cell.

43. Spin the tubes in the centrifuge and transfer 450 uL to a new
microcentrifuge tube.

5. DNA ethanol precipitation procedure:
51. Add 1/10 vols (45ul) of sodium acetate 3M to the supernatant.
52. Add 1.5ul of GlycoBlue.
53. Add 2 vol (1000 μl) of cold EtOH 96% and vortex 10 s.
54. Incubate at −20 °C for 30–60min.
55. Centrifuge at 13,000 rpm or maximum speed for 15min and

remove the supernatant leaving a small volume of liquid to not
disturb the pellet.

56. Add 1ml of EtOH 70% centrifuge atmaximum speed for 5min and
remove the ethanol without disturbing the pellet.

57. Let the ethanol dry (but not overdry), preferably in a vacuum
centrifuge machine.

58. Resuspend the pellet in 50 μl of Tris-Hcl 10mM and dissolve the
DNA by pipetting up and down.

DNAextraction fromculture samples. Cultureswere heat inactivated
at 90 °C during 30min and thenMTBDNAwas extracted following the
standardisedCTABprotocol31 basedonanovernight cell wall digestion
with lysozyme, followed by incubation steps with proteinaseK, SDS,
CTAB andNaCl and a final DNAprecipitation stepwith isopropanol. All
bacterial cultures and DNA extraction steps were performed in a BSL-3
laboratory.

qPCR Conditions. We assess the concentration of MTB in sputum
samples to decide the sequencing approach. The qPCRwas performed
in a total volume of 20 μL including 10 μL of Kapa Fast Probe Master
Mix 2X, 2 μL of forward and reverse primers mix 2.5 μM, 0.6 μL of
probe 10 μM; and 1 ng of DNA. We used DNA normalised to 0.5 ng/μL.
The qPCR assay consisted on the amplification of a 65 bp regionwithin
the Rv2341 gene using the following primers: Forward-
GCCGCTCATGCTCCTTGGAT, Reverse-AGGTCGGTTCGCTGGTCTTG,
Probe-TGAGTGCCTGCGGCCGCAGCGC32.

Sequencing selection. We preparedNexteraXT (Illumina) libraries for
all samples. Libraries from cultures were sequenced directly. Regard-
ing sputum samples, we classified libraries for dWGS (direct) or eWGS
(enriched) depending on Cq and %TB obtained in pre-sequencing runs
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as described in ref. 10. Therefore, we performed a qPCR targeting
Rv2341 gene10,32 to quantify the amount of MTB DNA. Sputa that
obtained aCqvalue above 35 (equivalent to less than2 genome copies)
were considered negative (not suitable for sequencing) (See qPCR
conditions section). Libraries were prepared for all MTB positive
samples (Cq<35) and a pre-sequencing run was performed to estimate
the percentage of MTB. According to qPCR and pre-sequencing %MTB
result we performed dWGS in sputa obtaining a Cq<25 and more than
20% of MTB and the rest sputum samples underwent an enrichment
step before sequencing. The enrichment step consisted of a MTB DNA
capture using RNA biotinylated baits (See Enrichment step section).
See the flowchart in Fig. 4.

WGS was performed in Illumina Miseq (2x300bp) or NextSeq
(2x150bp) platforms. Sampleswere sequenced until aminimumof 30X
median depth was reached.

Enrichment step. We usedmyBaits kit (Arbor Biosciences) to perform
the hybridisation MTB DNA capture step following the myBaits pro-
tocol Version 4.01. This protocol is based on a hybridization of already
prepared whole genome sequencing libraries (prepared using Nex-
teraXT kit, Illumina) with RNA biotinylated baits at 65 °C overnight (at
least 24 h). During this step, baits hybridised to denatured MTB DNA.
Then, most non-captured DNA is discarded by different cleaning steps
with streptavidin-coated magnetic beads. Finally, the MTB library is
amplified by a post-capture PCR in a 50uL reaction containing 25uL of
KAPA HiFi HotStart ReadyMix PCR Kit (Roche), 200nM of Illumina
sequencing primers P5 and P7; and 15uL of captured library. Post-
capture PRC conditions are the following: 15 cycles of 20 s to 98 °C,
30 s to 65 °C and 1min to 72 °C.

The RNA-biotinylated baits panel was designed and developed by
Arbor Biosciences using as reference the inferred ancestor genome of

the MTB (NC_000962.3), genetically equidistant to all the MTB linea-
ges. This panel is available upon request.

We evaluated the enrichment stepby obtaining the fold-changeof
the percentage of MTB reads between the 32 sputum samples before
and after the enrichment. Themedian fold-changewas 10.96 (Fig. 5). In
other words, sputa containing an initial MTB% within 0.5–10% got a
64.8% (average) while those with an initial MTB% of 10–25% reached
94.3% after undergoing the enrichment step (Fig. 5).

Bioinformatics analysis
Core analysis. Analysis was performed using our routine pipeline
available at https://gitlab.com/tbgenomicsunit/ThePipeline for both
culture and sputum samples. First, reads were trimmed by quality with
FastP33; non-MTB reads were discarded using Kraken (v0.10.5)8,34.
MTB reads were mapped to the reference ancestor genome
(NC_000962.3)35, which is genetically equidistant to all lineages, using
BWA (version 0.7.10-r789)18.

Samples with a median depth below 30X and less than 95% of the
genome covered were discarded for downstream variant comparison
analysis. For the remaining good quality samples, variants were called
with VarScan (version 2.3.7)36 and Samtools v1.1537 by applying stricter
coverage and frequency filters for culture samples than for sputum
samples (variants called in at least 3 reads, in both strands for sputum;
variants appearing in 6 reads, in at 10X depth and in both strands, for
culture) (see parameters for VarScan in Fig. 6). For the genetic diversity
comparison analysis, we discarded SNPs appearing in high density
regions with GATK (version 4.0.2.1)38 or genomic regions that are
known to be challenging for short-read mapping such as repetitive
genes or mobile elements (PE/PPE gene families)39 by using a custo-
mised Python2 (version 2.7.5) script. Highly conserved genes such as
rrs and rrl were also discarded for the comparisons to avoid false
positive variability coming from non-MTB reads not discarded by
Kraken. We also obtained Pearson’s correlation of the variant fre-
quency obtained in each sputum-culture pair (the mean, median and
the range).

Capture technical validation. To investigate if the capture step
introduced bias in variant calling, we analysed sputum samples
sequenced by direct (dWGS) and enrichment (eWGS) methods and
compared to the respective culture (hereafter, trios-analysis). All dis-
crepant positions within trios, but particularly between eWGS and
dGWS samples, were manually checked on the reads alignment to the

95 P

4P Negative Cultures

DNA extraction 91 P

DNA Quality Control 

80 P

qPCR 11P MTB Neq (Cq > 35)

Sequencing workflow

80 C 48 S 32 S

dWGS eWGS

Cq < 25
%MTB > 20%

Pre-Seq runs
Cq > 25

%MTB < 20%

61 P

Sequencing 

Sequencing Analysis:
quality filter

>30x Depth & >95% Coverage

19P Bad quality WGS

Comparison

Fig. 4 | Sequencingworkflow.Diagram summarising the sequencing steps and the
amount of samples that havepassedorhavebeendiscarded (in red). Abbreviations:
C-Culture, S-Sputum, P-Pair, dWGS-sputum samples not enriched, eWGS-sputum
samples enriched.

Fig. 5 | Comparison of percentage ofMTB.Comparison of %MTBDNA before and
after the enrichment step of the 32 sputum samples that have been enriched. Each
point represents a sputum sample. Colours represent samples’ origin orange for
samples from Georgia and purple for samples for Mozambique. Lines link each
sputum sample before and after the enrichment. Source data are provided as a
Source Data file.
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reference genome in Tablet viewer (v1.17.08.17, see Supplementary
Fig. 2) to identify the causes of the inconsistency. All discrepant var-
iants were identified in supplementary alignments, which are part of a
read that is split and aligned to a different part of the genome than the
primary alignment18,19, were identified as the main source of false
positive variants. Therefore,wediscarded them frombamfiles running
samtools v1.15 (command: samtools view -bh -f0 -F256 -F2048
$BAM_FILE), before variant calling step. Afterwards, we evaluated the
impact of discarding supplementary alignments in diversity compar-
ison in all the 61 pairs (sputum-culture) analysed.

After applying all filters described above, a pairwise comparison
of variants was conducted within sputum samples and their corre-
sponding cultures. At this point we included a recovery step based on
searching for the discrepant SNPs, in the files of the paired sample
obtained from a less restrictive variant calling. The reason was that in
sampleswith suboptimal depth themissing SNPmay still exist butmay
have been lost during the filtering steps. Parameters used in VarScan
pileup2snp for generating rescued SNP files for comparison analysis
were: --min-coverage 2, --min-reads2 1, --min-freq-for-hom 0.9, --min-
var-freq 0.01.

The average of rescued SNP shared within sputum and culture
pairs was 24 (5–69) representing the 2.5% (0.5–7.9%) of the total var-
iants, highlighting the importance of the step when dealing with
samples of heterogeneous coverage.

To verify if rescue was biassing the comparison analysis, we con-
ducted a concordance analysis to corroborate that our rescue
approach was not artificially removing true discrepant positions. We
analysed 35 sputum-culture pairs with depth of coverage >50x and
>95%of the genome coveredby applying the samecalling pipeline (see
the variant calling parameters for cultures in Fig. 6) and skipping the
rescue step. Results showed a median of 886 (range: 828–1059) of
common variants, 2 (range: 0–6) sputum-exclusive variants and 2
(range: 0–16) culture-exclusive variants. This corresponded to a
median Cohen’s Kappa coefficient40 of 0.998 (0.992-1) which repre-
sented an almost perfect agreement. In this case, themedian Pearson’s
correlation of variants frequencies was 0.939 (0.454–0.991).

Finally, variants appearing in both samples were classified as
“common”, variants rescued were classified as “common rescued”,
sputum-exclusive variants were called “only sputum” and those
culture-exclusive were classified as “only culture”.

Validation using available datasets. We applied our pipeline descri-
bed to analyse genetic variability on available sputum-culture paired
data sets. We downloaded the sequences under the following project

accession numbers from ENA: PRJEB920612, PRJNA48671316 and
PRJEB3760910. Sequences were analysed and only pairs passing the
quality filters were compared as explained above (see Bioinformatic
Analysis from Methods).

Resistance profiling and phylogenetic classification. The resistance
profile was obtained by looking for DR-conferring mutations (>10%
frequency) listed in the WHO catalogue (version from 03/09/2021)41.
Lineage and sublineage classification of the strains was determined by
looking for phylogenetic variants reported in bibliography20,42.

Overall, even though the sequencing quality for some sputum
was not enough for the comparison analysis, we were able to clas-
sify phylogenetically 74/80 (92.5%) sputum samples sequenced
and 72/80 (90.0%) at a sublineage level according Coll et al.
classification20.

Pairwise distance between each sputum-culture pair was obtained
using the R package ape43 based on amultiple alignment of fixed SNPs
(fSNPs, >90% frequency). In addition, we also obtained the pairwise
distance to see whether paired samples clustered together. Neighbour
joining trees were constructed using MEGA version X44.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequences generated in this paper have been deposited in the Eur-
opean Nucleotide Archive (ENA) under project accession number:
PRJEB64897. Detailed information about the samples can be found at
Supplementary Data 1. We also downloaded the sequences under the
following project accession numbers from ENA: PRJEB9206 (https://
doi.org/10.1128/jcm.00486-15)12, PRJNA486713 (https://doi.org/10.
1186/s12864-019-5782-2)16 and PRJEB37609 (https://doi.org/10.1016/
S2666-5247(20)30060-4)10. Source data are provided with this paper.

Code availability
The pipeline used for analysing sputum and culture sequences has
been developed and validated in our laboratory and it is available at:
https://gitlab.com/tbgenomicsunit/ThePipeline.
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